Since boxplots have become the
de facto standard for plotting the distribution of data most
users are familiar with these and the formula input for dataframes.
However this input is not available in the standard
histoplot
package. Thus it has been restored here for
enhanced backwards compatibility with boxplot
.
As shown below for the iris
dataset, histogram plots
show distribution information taking formula input that
boxplot
implements but histoplot
is unable to.
This demonstrates the customisation demonstrated in the main histoplot vignette using
histoplot syntax with the formula method commonly used for
boxplot
, t.test
, and lm
.
Whereas performing the same function does not work with
vioplot
(0.2).
devtools::install_version("vioplot", version = "0.2")
library("vioplot")
vioplot(Sepal.Length~Species, data = iris)
Error in min(data) : invalid 'type' (language) of argument
Another concern we see here is that the vioplot
defaults
are not aesthetically pleasing, with a rather glaring colour scheme
unsuitable for professional or academic usage. Thus the plot default
colours have been changed as shown here:
Plot colours can be further customised as with the original vioplot
package using the col
argument:
However the vioplot
(0.2) function is unable to colour
each histogram separately, thus this is enabled with a vectorised
col
in histoplot
(0.4):
Colours can also be customised for the histogram fill and border
separately using the col
and border
arguments:
histoplot(Sepal.Length~Species, data = iris, main = "Sepal Length", col="lightblue", border="royalblue")
Similarly, the arguments lineCol
and
rectCol
specify the colours of the boxplot outline and
rectangle fill. For simplicity the box and whiskers of the boxplot will
always have the same colour.
histoplot(Sepal.Length~Species, data = iris, main = "Sepal Length", rectCol="palevioletred", lineCol="violetred")
The same applies to the colour of the median point with
colMed
:
### Combined customisation
These can be customised colours can be combined:
histoplot(Sepal.Length~Species, data = iris, main = "Sepal Length", col="lightblue", border="royalblue", rectCol="palevioletred", lineCol="violetred", colMed="violet")
These colour and shape settings can also be customised separately for each histogram:
histoplot(Sepal.Length~Species, data = iris, main="Sepal Length", col=c("lightgreen", "lightblue", "palevioletred"), border=c("darkolivegreen4", "royalblue4", "violetred4"), rectCol=c("forestgreen", "blue", "palevioletred3"), lineCol=c("darkolivegreen", "royalblue", "violetred4"), colMed=c("green", "cyan", "magenta"), pchMed=c(15, 17, 19))
We set up the data with two categories (Sepal Width) as follows:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.000 2.800 3.000 3.057 3.300 4.400
##
## FALSE TRUE
## 83 67
iris_large <- iris[iris$Sepal.Width > mean(iris$Sepal.Width), ]
iris_small <- iris[iris$Sepal.Width <= mean(iris$Sepal.Width), ]
A direct comparision of 2 datasets can be made with the
side
argument and add = TRUE
on the second
plot:
histoplot(Sepal.Length~Species, data=iris_large, col = "palevioletred", plotCentre = "line", side = "right")
histoplot(Sepal.Length~Species, data=iris_small, col = "lightblue", plotCentre = "line", side = "left", add = T)
title(xlab = "Species", ylab = "Sepal Length")
legend("topleft", fill = c("lightblue", "palevioletred"), legend = c("small", "large"), title = "Sepal Width")